
Adaptive Order Radau Methods
Shreyas Ekanathan

Mentor: Dr. Chris Rackauckas
 MIT PRIMES October Conference

10/12/2024

Table of Contents
1. Background on the Problem and Runge-Kutta Methods
2. Radau Methods
3. Complex Transformation
4. Adaptivity

Problem
- Stiff Ordinary Differential Equations

What Exactly is a Runge-Kutta Method?
- Generalized collocation methods to numerically approximate solutions to first

order differential equations

Mathematical Formulation

Approximate solution at time t = t0 + dt as:

Where kp is defined as:

Benefits of Radau

Building a Radau Method
- Tableau: Evaluate constants for our method.
- Time-stepping: Simulate one time-step of the method, determining the value of u

at t = t0+dt

Linear System
- When performing a time-step in a Radau method, we need to evaluate the

solution to a costly linear system involving A-1.

- Optimize: Find a rigid structure for A-1!
- Goal: Find a transformation matrix T that sends A-1 into a nice form.

What can we do better than a naive implementation?
Transformation of the solver to use the complex eigenbasis to simplify the most costly
part of the computation!

This means that a solver for real-valued ODEs can be accelerated by using
computations in the complex plane!

A-1

- A-1 is a square matrix that has 1 real eigenvalue and several complex conjugate
pairs of eigenvalues.

Transformation Matrix
Take a basis (r, u, v)!

Solving the System
- Now, instead of explicitly multiplying to solve the linear system, we can utilize our

rigid structure of A-1

- Each block is represented as:

- Multiplying by the function evaluations gives:

Radau’s Step Size Adaptivity

Time

X(t)

Propose a
timestep h

Approximate the
solution at t+h
Approximate the
error at t+h

Error is too high, reject!

Propose a new
timestep

Approximate the
error at the new
timestep

Error is small enough. Accept!

Idea: use different orders of
Radau to estimate error and
adapt steps on the fly

Radau’s Order Adaptivity

Time

X(t)

Idea: high order methods are
only more efficient for smaller
time steps, so mix order
adaptivity with time step
adaptivity

Small
timesteps →
13th order

Bigger
timesteps →
9th order

Even bigger
timesteps →
5th order

Building on Existing Work
- No hard-coded coefficients

- The methods can generate the coefficients (A, b, c, T, etc) on the fly.
- Full Adaptivity

- Existing methods are constrained to orders 5, 9, and 13, but our implementation will eventually
span 1 - as high as you want!

Tableau Computation

Acknowledgements
I would like to thank:

- My mentor, Dr. Chris Rackauckas
- MIT PRIMES
- My family

Thank You!
Questions?

References
The current state of the art work has been done by Ernst Hairer, who developed most
of the techniques used in this presentation.

Much of the theory is cited from Solving Ordinary Differential Equations II, by Ernst
Hairer and Gerhard Wanner.

In addition, the paper Stiff differential equations solved by Radau methods was very
helpful.

Hairer’s scripts can be found online at here, while my scripts can be found here.

https://www.sciencedirect.com/science/article/pii/S037704279900134X#aep-section-id18
https://www.unige.ch/~hairer/prog/stiff/radau.f
https://github.com/SciML/OrdinaryDiffEq.jl/tree/master/lib/OrdinaryDiffEqFIRK

