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Problem
- Stiff Ordinary Differential Equations



What Exactly is a Runge-Kutta Method?
- Generalized collocation methods to numerically approximate solutions to first 

order differential equations



Mathematical Formulation

Approximate solution at time t = t0 + dt as:

Where kp is defined as:



Benefits of Radau



Building a Radau Method
- Tableau: Evaluate constants for our method.
- Time-stepping: Simulate one time-step of the method, determining the value of u 

at t = t0+dt



Linear System
- When performing a time-step in a Radau method, we need to evaluate the 

solution to a costly linear system involving A-1.

- Optimize: Find a rigid structure for A-1!
- Goal: Find a transformation matrix T that sends A-1 into a nice form.



What can we do better than a naive implementation?
Transformation of the solver to use the complex eigenbasis to simplify the most costly 
part of the computation!

This means that a solver for real-valued ODEs can be accelerated by using 
computations in the complex plane!



A-1

- A-1 is a square matrix that has 1 real eigenvalue and several complex conjugate 
pairs of eigenvalues.



Transformation Matrix
Take a basis (r, u, v)!



Solving the System
- Now, instead of explicitly multiplying to solve the linear system, we can utilize our 

rigid structure of A-1

- Each block is represented as: 

- Multiplying by the function evaluations gives:



Radau’s Step Size Adaptivity

Time

X(t)

Propose a 
timestep h

Approximate the 
solution at t+h
Approximate the 
error at t+h

Error is too high, reject!

Propose a new 
timestep

Approximate the 
error at the new 
timestep

Error is small enough. Accept!

Idea: use different orders of 
Radau to estimate error and 
adapt steps on the fly



Radau’s Order Adaptivity

Time

X(t)

Idea: high order methods are 
only more efficient for smaller 
time steps, so mix order 
adaptivity with time step 
adaptivity

Small 
timesteps → 
13th order

Bigger 
timesteps → 
9th order

Even bigger 
timesteps → 
5th order



Building on Existing Work
- No hard-coded coefficients

- The methods can generate the coefficients (A, b, c, T, etc) on the fly.
- Full Adaptivity

- Existing methods are constrained to orders 5, 9, and 13, but our implementation will eventually 
span 1 - as high as you want!



Tableau Computation
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Thank You!
Questions?
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